REGIONAL SCHOOL UNIT 40

Friendship • Union • Waldoboro • Warren • Washington 1070 Heald Highway, PO Box 701, Union, Maine 04862 207.785.2277

Steve Nolan, Superintendent Christina Wotton, Assistant Superintendent Karen Pike, Business Manager Karen Brackett, Director of Special Services

May 31, 2022

Dear Students, Families and Staff,

In accordance with M.R.S. §2604-B (An Act To Strengthen Testing for Lead in School Drinking Water), RSU 40 took initial water samples on April 20, 2022, which were submitted to A&L Laboratories, Auburn ME for analysis. This letter is intended to share the findings of those tests and our actions in response.

I have attached 2 documents:

- a. Public Notification & Laboratory Report for each school
- b. Mitigation & Remediation Guide

This legislation lowers the Environmental Protection Agency (EPA) lead level threshold from 15 parts per billion (ppb) to 4ppb for Maine schools. Additionally, this initial test was taken after 24 hours "rest" period during which no water was run through the fixtures. This may cause the lead levels to be artificially high.

We will conduct secondary testing on those fixtures with elevated lead levels in an attempt to both verify results and to isolate the cause of the elevated levels. This test will include a 30 seconds of water running before a sample is taken. I anticipate those results on/about June 30, 2022. Based on those secondary findings, we will develop a plan for mitigation or remediation as required.

I will keep you updated as we work through this process.

Please visit <u>www.leadtestingmaineschools.com</u> to obtain further information. If you have questions, feel free to contact me at (207) 785-2277 x237 or <u>brian_race@msad40.org</u>.

Sincerely,

Bian N. Lace

Brian H. Race Director of Facilities

Public Notice: School Lead Water Sample Results

Information concerning the lead level results for drinking water samples taken at

name of school

Maine law requires schools to test all drinking water faucets that could be used for drinking or cooking purposes for the presence of lead. This law further requires that parents and staff are made aware of all of the sample results.

During the period of ______ to _____

Water samples were collected from ______ water fixtures.

Any sites producing elevated levels of lead (exceeding 4 parts per billion, or ppb), and therefore the faucets of most concern, are listed in the table on the following page(s).

Results for all drinking water outlets tested can be viewed here:

Enter website address or physical location

Statewide test results for Maine schools can also be found the on Maine DWP website at: www.medwp.com/schools.html

How does lead get into the water? When lead is present in water, it typically leaches, or dissolves, into water flowing through plumbing and fixtures *inside* a building from sources such as solder, pipes, or the faucets themselves. The school's well water or water provided by your local water district are unlikely sources of lead.

What are the Health Effects of exposure to lead in drinking water? Infants and children who drink water containing high levels of lead can experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink water containing excess levels of lead over many years could develop kidney problems or high blood pressure.

What level of lead is safe? No level of lead is safe. Because of the potential serious health risks, both the Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control and Prevention (CDC) agree that there is no known safe level of lead in a child's blood.

Please be aware that this sampling is done under conditions that are optimal for identifying lead in water. By having the water sit unused for many hours, lead that might be leaching from pipes or fittings is more easily discovered. However, *these levels are likely not the level of lead present in the drinking water throughout the school day*.

What can I do? Here are a few steps you can take to reduce the risk of your child being exposed to lead through school drinking water:

- Provide your child with bottled water or water from your home to reduce their usage of school drinking water outlets. Be sure to sample your home water for lead, too.
- Remind your child to let the water run for 30 seconds before drinking or filling a water bottle at school, which will lower any possible lead concentration.
- Consult your doctor if you have any specific health concerns.

School Fixtures with Elevated Lead Results (exceeding 4 parts per billion)

	Collection Date	Collection Site	Concentration (ppb)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

*Additional tables may be attached if your school has more than 20 collection sites with elevated lead levels.

What is Being Done:

To correct the problem(s), we have taken these actions:

Future plans for the reduction of high lead levels in our drinking water include:

These actions are expected to be completed on:

(Date)

Information about Lead in Drinking Water for Students, Staff, and Parents

Health Effects of Lead

If too much lead enters your body from drinking water or other sources, serious health problems can occur, including damage to the brain and kidneys and interference with the production of oxygen-carrying red blood cells.

The greatest risk of lead exposure is to infants, young children, and pregnant women: During pregnancy, the fetus receives lead from the mother, which may affect brain development. In children, the continuing effects of lead on the brain have been linked to lowered IQ. Furthermore, lead is stored in the bones and can be released later in life, so, adults who were exposed to high levels of lead earlier in life may still encounter kidney problems and high blood pressure.

Sources of Lead

Lead can be found in many places; knowing the sources of lead can help limit your contact with it. Although most of the reported cases of lead poisoning in Maine have been a result of lead paint dust, exposure can also occur through drinking and cooking with water that has lead, as it can dissolve into water from solder or brass faucets, fittings, and valves. Exposure to lead can also come from jobs and hobbies that utilize materials containing lead, as well as from things you buy such as toys and antiques.

How Lead Got into Your Water

The most likely source of lead in your water is leaching from lead solder on your pipes or out of brass plumbing materials found in faucets, fittings, and valves.

Steps You Can Take to Protect Yourself from Lead in Drinking Water

- Run the water for at least 30 seconds or until it becomes noticeably colder before using it for drinking or cooking. The longer water sits in piping, the greater the chance that lead might leach in.
- Use cold water for drinking and cooking as well as for preparing baby formula. Hot water dissolves lead more quickly than cold water.
- Clean your faucet aerator (screen) regularly.
- Consider using bottled water or a water filter for drinking and cooking.

* Remember: Boiling the water does not reduce lead levels.

Find Out More

For more information on reducing lead exposure around your home/building and the health effects of lead, visit EPA's website at <u>http://www.epa.gov/lead</u>, or contact the Maine Childhood Lead Poisoning Prevention Program (866-292-3474) or your health care provider. Your doctor can answer questions about having your child tested for lead.

A & L LABORATORY A DIVISION OF GRANITE STATE ANALYTICAL SERVICES, LLC.

155 Center Street, Building C, Auburn, Maine 04210

Phone (207) 784-5354

website www.allaboratory.com

Laboratory Report

Medomak Valley High School 320 Manktown Road Waldoboro, ME 04572

Date Printed:	05/27/2022
Work Order #:	2204-03101
Client Job #:	770
Date Received:	04/20/2022
Sample collected in:	Maine

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of the analyzing laboratory's Quality Assurance Plan, Standard Operating Procedures and State Accreditation. This certificate shall not be reproduced, except in full, without the written approval of the analyzing laboratory. The results presented in this report relate to the samples listed on the following pages in the condition in which they were received. Accreditation for each analyte is identified by the * symbol following the analyte name. Location of our analyzing laboratory is identified by the code in the Analyst Column.

A & L Laboratory:

Identified by ME in Analyst Column 155 Center Street, Auburn, Maine 04210 www.allaboratory.com Granite State Analytical Services LLC:

Identified by NH in Analyst Column 22 Manchester Road, Derry, NH 03038 www.granitestateanalytical.com

ANALYSIS RELATED NOTES:

- RL: "Reporting limit" means the lowest level of an analyte that can be accurately recovered from the matrix of interest.
- A & L Laboratory / Granite State Analytical Services LLC / Nashoba Analytical LLC. accreditation lists can be found on our websites listed above.
- Subcontracted samples will be identified by the Accreditation number of the subcontract laboratory in the analyst field for each analyte and the appropriate laboratory will be listed here. None
- Data Qualifiers (DQ) Flags provide additional information in regards to the receipt, analysis or quality control of a sample.
 These are indicated under the DQ Flags Column on your report and listed here if necessary: Data Qualifier (DQ) Flags: None

SAMPLE STATE SPECIFIC NOTES:

• The thermal preservation requirement of 4°C for nitrate & nitrite has been waived by the Maine CDC for all samples submitted to the Drinking Water Program.

Additional Narrative or Comments: None

We appreciate the opportunity to provide you with laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be happy to assist you.

81th

Rebecca L. Labranche Laboratory Director

A & L Laboratory: Accreditations: Maine ME00021, New Hampshire 2501, Maine Radon Registration ID # SPC20 Granite State Analytical Services, LLC: Accreditations: New Hampshire 1015; Maine NH00003; Massachusetts M-NH0003; Rhode Island 101513; Vermont VT-101507 Nashoba Analytical, LLC: Accreditations: Massachusetts M-MA1118

DATE PRINTED:

A & L LABORATORY A DIVISION OF GRANITE STATE ANALYTICAL SERVICES, LLC.

155 Center Street, Building C, Auburn, Maine 04210

Phone (207) 784-5354

website www.allaboratory.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

05/2//2022
Medomak Valley High School
320 Manktown Road
020
Waldoboro, ME 04572
EPA 200.8
15 ppb
4 ppb
1 ppb

05/27/2022

Legend		
Lead Above 4 ppb	(ا	
Lead Above 15 ppb	\otimes	

DATE AND TIME RECEIVED: ANALYSIS PACKAGE: **RECEIPT TEMPERATURE:** CLIENT JOB #: 770

04/20/2022 10:40AM Maine Schools-Lead 20° CELSIUS

Sample ID #	Location	Sample Type	Outlet Type	Date - Time Water Sampled	Result	Test Units	Pass /Fail	-	Analyst	Date - Time Analyzed
2204-03101-001	Bottle fill stations outside room #8	I	DWF	04/19/2022 07:58AM	<1	ppb			DG-NH (05/23/2022 10:30PM
2204-03101-002	Bottle fill stations outside room #24	Ι	DWF	04/19/2022 08:00AM	4.5	ppb	! >		DG-NH (05/23/2022 10:33PM
2204-03101-003	Bottle fill stations outside room, Gym	Ι	DWF	04/19/2022 07:30AM	<1	ppb			DG-NH (05/23/2022 10:37PM
2204-03101-004	Bottle fill stations in lobby	I	DWF	04/19/2022 07:27AM	<1	ppb			DG-NH ()5/23/2022 10:40PM
2204-03101-005	Bottle fill stations outside library	I	DWF	04/19/2022 05:58AM	<1	ppb			DG-NH (05/23/2022 10:51PM
2204-03101-006	Northwing girls bathroom, 2 sinks	I	OT	04/19/2022 08:13AM	<1	ppb			DG-NH (05/23/2022 10:55PM
2204-03101-007	Northwing boys bathroom, 2 sinks	Ι	OT	04/19/2022 08:13AM	<1	ppb			DG-NH (05/23/2022 10:58PM
2204-03101-008	Northwing room #3 bathroom, sink	Ι	OT	04/19/2022 08:11AM	1.3	ppb			DG-NH (05/23/2022 11:02PM
2204-03101-009	Northwing room #1, 3 sinks	I	KF	04/19/2022 08:08AM	3.6	ppb			DG-NH ()5/23/2022 11:06PM
2204-03101-010	Northwing room #5, 2 sinks	I.	KF	04/19/2022 08:07AM	1.3	ppb			DG-NH ()5/23/2022 11:09PM
2204-03101-011	Nurse, bathroom, sink	I	OT	04/19/2022 06:23AM	1.1	ppb			DG-NH ()5/23/2022 11:20PM
2204-03101-012	Nurse, sink	I	OT	04/19/2022 06:22AM	<1	ppb			DG-NH ()5/23/2022 11:24PM
2204-03101-013	Teachers room, sink	I	KF	04/19/2022 06:00AM	1.6	ppb			DG-NH ()5/23/2022 11:38PM
2204-03101-014	Teachers room, bathroom, 2 sinks	I	OT	04/19/2022 06:04AM	<1	ppb			DG-NH (05/23/2022 11:42PM
2204-03101-015	Kitchen, bathroom, sink	I	OT	04/19/2022 06:47AM	17.6	ppb	\otimes		DG-NH ()5/23/2022 11:45PM
2204-03101-016	Kitchen, 3 bay wash sink, 2 faucets	I	KF	04/19/2022 06:49AM	3.4	ppb			DG-NH (05/23/2022 11:49PM
2204-03101-017	Kitchen, hand wash sink	I	OT	04/19/2022 06:47AM	13.6	ppb			DG-NH ()5/23/2022 11:52PM
2204-03101-018	Custodial closet, across from #10	I	ОТ	04/19/2022 08:11AM	6.6	ppb	(ا		DR-NH (05/26/2022 06:53PM

81th

Rebecca L. Labranche Laboratory Director

A & L LABORATORY A DIVISION OF GRANITE STATE ANALYTICAL SERVICES, LLC.

155 Center Street, Building C, Auburn, Maine 04210

Phone (207) 784-5354

website www.allaboratory.com

10:40AM

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED:	05/27/2022						
CLIENT NAME:	Medomak Valley H	iah School				Legend	
•====		.g concor			Lead Above 4 pp	b	(ا
CLIENT ADDRESS:	320 Manktown Roa	d			Lead Above 15 p	pb	\otimes
	Waldoboro, ME 045	572					
METHOD:	EPA 200.8			DATE	AND TIME RECEIVE	D: 04/20/20)22 10:40AN
EPA ACTION LEVEL:	15 ppb			ANAL	SIS PACKAGE:	Maine So	hools-Lead
MAINE GUIDELINE:	4 ppb			RECEI	PT TEMPERATURE:	20° CELS	SIUS
REPORTING LIMIT:	1 ppb			CLIEN	T JOB #:	770	
Sample ID #	Location	Sample Outlet Type Type	Date - Time Water Sampled	Result Test	Units Pass DQ /Fail Flag	Analyst	Date - Time Analyzed

		Type	Туре	Water Sampled			/Fail Flag	Anal	vzed
2204-03101-019	Custodial closet, across from #33		OT	04/19/2022 07:06AM	<1	ppb	y	DG-NH 05/23/2022	
2204-03101-020	Custodial closet, across from #21	I	ОТ	04/19/2022 08:38AM	5.0	ppb	()	DG-NH 05/24/2022	
2204-03101-021	Boiler room, 1 water source	Ι	OT	04/19/2022 06:40AM	21.3	ppb	\otimes	DR-NH 05/26/2022	07:01PM
2204-03101-022	Maint building, 1 sink	I	OT	04/19/2022 07:13AM	1.2	ppb		DG-NH 05/24/2022	12:03AM
2204-03101-023	Bathrooms by band room x2	Ι	OT	04/19/2022 07:04AM	6.2	ppb	()	DR-NH 05/21/2022	11:34AM
2204-03101-024	Lobby, girls, sink	I	OT	04/19/2022 07:28AM	4.6	ppb	!	DR-NH 05/21/2022	11:37AM
2204-03101-025	Lobby, boys, sink	Ι	OT	04/19/2022 07:27AM	2.3	ppb		DR-NH 05/21/2022	11:40AM
2204-03101-026	Matt Lash office, sink/shower	Ι	OT	04/19/2022 07:33AM	3.6	ppb		DR-NH 05/21/2022	11:42AM
2204-03101-027	Ryan DiPompo office, sink/shower	Ι	ОТ	04/19/2022 07:37AM	3.9	ppb		DR-NH 05/21/2022	11:45AM
2204-03101-028	Guidance - 2 bathroom sinks	I	OT	04/19/2022 06:17AM	3.0	ppb		DR-NH 05/21/2022	11:48AM
2204-03101-029	Ice machine	Ι	KF	04/19/2022 07:34AM	<1	ppb		DR-NH 05/21/2022	11:51AM
2204-03101-030	Ice machine, sink	I	OT	04/19/2022 07:32AM	<1	ppb		DR-NH 05/26/2022	07:10PM
2204-03101-031	JV girls locker room, sink	Ι	OT	04/19/2022 07:34AM	1.7	ppb		DR-NH 05/21/2022	11:54AM
2204-03101-032	JV boys locker room, sink	Ι	OT	04/19/2022 07:39AM	3.3	ppb		DR-NH 05/21/2022	11:57AM
2204-03101-033	Varsity boys locker room, sink	Ι	OT	04/19/2022 07:38AM	13.2	ppb	()	DR-NH 05/26/2022	07:25PM
2204-03101-034	Varsity girls locker room, sink	Ι	OT	04/19/2022 07:32AM	6.8	ppb	! >	DR-NH 05/21/2022	12:00PM
2204-03101-035	Library, sink	Ι	OT	04/19/2022 06:12AM	8.1	ppb	(ا	DR-NH 05/21/2022	12:15PM
2204-03101-036	Library, bathroom, boys 3 sinks	Ι	ОТ	04/19/2022 06:11AM	<1	ppb		DR-NH 05/21/2022	12:18PM
2204-03101-037	Library, bathroom, unisex 1 sink	Ι	ОТ	04/19/2022 06:07AM	1.5	ppb		DR-NH 05/21/2022	12:21PM

ZILL

Rebecca L. Labranche Laboratory Director

A & L LABORATORY A DIVISION OF GRANITE STATE ANALYTICAL SERVICES, LLC.

155 Center Street, Building C, Auburn, Maine 04210

Phone (207) 784-5354

website www.allaboratory.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED:	05/27/2022								aand	
CLIENT NAME:	Medomak Valley Hig	jh School				Le	ead Abo	ve 4 ppb	egend	♦
CLIENT ADDRESS:	320 Manktown Roac Waldoboro, ME 0457							ve 15 ppt)	Ň
METHOD: EPA ACTION LEVEL: MAINE GUIDELINE: REPORTING LIMIT:	EPA 200.8 15 ppb 4 ppb 1 ppb					DATE AND ANALYSIS RECEIPT T CLIENT JO	PACKA Emper	GE:	Maii	20/2022 10:40AM ne Schools-Lead CELSIUS
Sample ID #	Location	Sample Type	Outlet Type	Date - Time Water Sampled	Result	Test Units	s Pass /Fail		Analyst	Date - Time Analyzed
2204-03101-038 Cla	y, 2 sinks	I	OT	04/19/2022 07:46AM	<1	ppb			DR-NH	05/21/2022 12:24PM
2204-03101-039 Cla	y, bathroom sink	I	OT	04/19/2022 07:46AM	2.4	ppb			DR-NH	05/21/2022 12:26PM
2204-03101-040 Art	, bathroom sink	I	OT	04/19/2022 07:48AM	1.8	ppb			DR-NH	05/21/2022 12:29PM
2204-03101-041 Art	, 2 sinks & 3 faucets	I	OT	04/19/2022 07:50AM	5.9	ppb	$\langle 0 \rangle$		DR-NH	05/21/2022 12:32PM
	, darkroom 2 sinks & 3 cets	I	OT	04/19/2022 07:51AM	<1	ppb			DR-NH	05/21/2022 12:35PM
	uthwing, boys bathroom, inks	Ι	OT	04/19/2022 08:39AM	<1	ppb			DR-NH	05/21/2022 12:47PM
	uthwing, girls bathroom, inks	I	OT	04/19/2022 08:39AM	3.0	ppb			DR-NH	05/21/2022 12:50PM
2204-03101-045 Sou fau	uthwing, #23 5 lab cets	Ι	ОТ	04/19/2022 08:40AM	5.5	ppb	(!)		DR-NH	05/21/2022 12:59PM
2204-03101-046 Sou fau	uthwing, #22, 8 lab cets	I	OT	04/19/2022 08:43AM	9.8	ppb	! >		DR-NH	05/21/2022 01:02PM
2204-03101-047 Sou fau	uthwing, #21 6 lab cets	Ι	ОТ	04/19/2022 08:43AM	10.4	ppb	(!)		DR-NH	05/26/2022 07:45PM
2204-03101-048 Sou fau	uthwing, #20 7 lab cets	I	OT	04/19/2022 08:41AM	36.1	ppb	\otimes		DR-NH	05/26/2022 07:34PM
	uthwing, #19 20 lab cets	I	OT	04/19/2022 08:41AM	9.4	ppb	! >		DR-NH	05/21/2022 01:05PM

ZILL

Rebecca L. Labranche Laboratory Director

Mitigation & Remediation Guide for Lead in School Drinking Water

State of Maine Department of Health and Human Services

Maine CDC Drinking Water Program

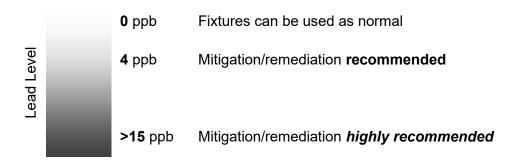
Contents

About This Guide	
Understanding Your Results	1
How Lead Gets in Water	
Determining the Source of Lead	i
Choosing an Appropriate Mitigation Method)
Routine Control Measures	0
 Temporary Control Measures	1
Permanent Control Measures	2
Follow Up Sampling	4
Required Reporting	4
Funding for Mitigation and Remediation.	4

About This Guide

This guide was developed by the Maine CDC Drinking Water Program (DWP) to assist your school in understanding your lead water testing results and guide you through mitigation and remediation processes to help reduce your water's lead levels.

As you work through this guide, remember not all mitigation/remediation actions are appropriate for all schools, locations, or lead levels. While there is no safe level of lead, fixtures with lead levels over 4ppb are recommended to be removed from service until mitigation/remediation takes place. Lead levels above 15 ppb are considered significantly elevated and may require more aggressive treatment actions. If your


Lead mitigation and remediation in schools is voluntary. However, schools are required to report all planned and completed mitigation /remediation actions to the Drinking Water Program.

school has fixtures for which lead sample results exceed 15 ppb, the DWP recommends seeking outside consultation to assist with mitigation/remediation. While the DWP does not endorse individual consultants, a list of local treatment companies can be found on the DWP website.

Understanding Your Results

When you receive your water sample test results from the lab, the results will be reported in parts per billion (ppb).

As you review your sample results, consider not only the lead levels, but also the vulnerability of your students and the likelihood of exposure. Remember, younger children are more vulnerable to lead and are more likely to be exposed by consuming water from bubblers or bottle fill stations. Also keep in mind the longer water sits undisturbed within your plumbing (such as after school vacations), the higher the potential for lead to dissolve into the water.

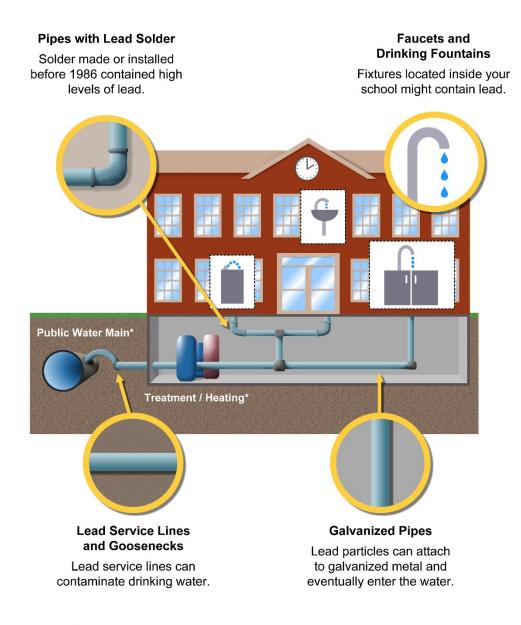
How Lead Gets in Water

Lead rarely occurs in water naturally; most often, lead found in drinking water originates from within your building's plumbing – from three locations in particular: the supply line, the internal piping, and individual fixtures like faucets. When plumbing is unused (as it tends to be overnight, on weekends, or extended breaks) lead can slowly dissolve from the plumbing into the water. The longer the water sits undisturbed, the greater the potential for elevated lead levels.

The Fixture (a.k.a. faucet)

Fixtures are water delivery outlets. They can include, but are not limited to, kitchen and bathroom faucets, drinking water fountains and bubblers, bottle fill stations, brass spigots, ice machines, and hot water kettles. Remember even new fixtures, piping, or other components made of non-metal material might not be "lead free." Products manufactured outside the U.S. (as are some online purchases) may still contain un-acceptable amounts of lead.

Internal Piping


The piping inside your building includes many components that could contain lead. In some instances, the pipes themselves are made of lead. Other sources include lead solder (historically used to join copper pipes), joints, fittings, and other pipe material such as galvanized steel.

Supply line

A supply line is the pipe that joins the building's internal plumbing to either a well or to the public water supply. Even non-lead supply lines can contain lead particles or lead components. It is not known how many privately-owned supply lines are made of lead or could contain lead, and so all should initially be considered suspect. Furthermore, private wells might also contain lead in the "packer" element that is used to help seal the well above the well screen; this is more common in wells drilled more than 20 years ago. Some models of older submersible well pumps also contain leaded-brass components.

To determine if any of your fixtures are lead-free, use the EPA's guide for identifying lead-free fixtures

*Regardless of whether your school's drinking water is supplied by a municipal water system or its own well, the water will enter the building through a service line(s). Once inside the building, water may undergo treatment for impurities and heating before being distributed to various fixtures in the building via a network of pipes.

This illustration is a simplified view of an internal water system served by a municipal supplier. Your school's source, system components, and fixtures may be different.

Determining the Source of Lead

If any of your initial samples come back with elevated lead levels, your next step is to identify the exact location(s) where lead is entering the water. To that end, we recommend a course of follow-up samples: a first-draw confirmation sample and a 30-second flush sample for each fixture with elevated lead, and a supply line sample. By collecting these additional samples and comparing their results, it's possible to locate where lead is leaching into your water.

Confirmation Samples

Confirmation samples will confirm your high lead result and can help determine if the fixture itself is contributing lead. *Results from several states show 90% of the time, an elevated sample is a result of lead components in the fixture itself.*

When you order a confirmation sample from the lab, instructions will be included for the collection method. Refer to sampling instructions for guidance on collecting a confirmation sample.

30-Second Flush Samples

The 30-second flush will help determine if the piping *behind* your fixture is contributing to your elevated lead result. For drinking fountains or similar fixtures that share plumbing, a single flush sample may be representative of the shared interior piping. An example would be a drinking water fountain unit with two spouts: a high spout and a low spout.

When you order a 30-second flush sample from the lab, instructions will be included for the collection method. Refer to sampling instructions for guidance on collecting a 30-second flush sample.

Supply line Samples

Use a supply line sample to determine if either the supply line or well pump is contributing lead. Only collect a single sample per supply line.

When you order a supply line sample from the lab, instructions will be included for the collection method. Refer to sampling instructions for guidance on collecting a supply line sample.

If lead was detected in your init fixture(s) or the plumbing directl contains lead components. To collect a confirmation sample at detectable lead levels.	Your fixture does not currently need remediation or mitigation. The DWP recommends sampling your water every few	
Although it is likely the fixture(s) elevated lead levels, it is still po and/or supply line could also be	ssible your internal piping	years because changes in water chemistry can cause lead to dissolve into water.
Collect a 30-second flush samp detectable lead levels. Collect a line. These additional samples the piping and/or supply line is o		
Does the 30 SECOND F the SUPPLY LINE SA		
Yes	No	
If the 30-second flush sample contains lead, it is an indication the internal piping contains lead. If the supply line sample	Lead is most likely coming only from the fixture and/or the plumbing to which the fixture is attached.	
sample contains lead, it is an indication the internal piping contains lead.	coming only from the fixture and/or the plumbing to which the fixture is attached. Refer to <i>Choosing an</i> <i>Appropriate Mitigation</i> <i>Method</i> section on page	
 sample contains lead, it is an indication the internal piping contains lead. If the supply line sample contains lead, it is likely the supply line or well pump may 	coming only from the fixture and/or the plumbing to which the fixture is attached. Refer to <i>Choosing an</i> <i>Appropriate Mitigation</i>	

Do results from your INITIAL SAMPLE indicate the presence of lead?

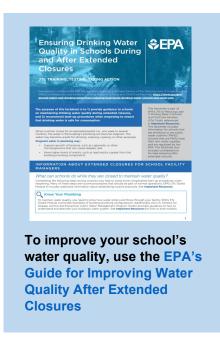
No

Yes

Choosing an Appropriate Mitigation Method

Once it has been determined mitigation is necessary, you will need to decide on the type of mitigation that is right for your school's system; not all mitigation/remediation actions are appropriate for all schools, locations, or lead levels. Mitigation and remediation methods fall into three different categories: routine, temporary, and permanent control measures, which are discussed in more detail later in this document.

Lead Level at Tap or Fixture	Appropriate Mitigation / Remediation Actions
< 1 ppb or Not Measurable (Non-detected)	Lead was not detected. These tap/fixtures may be used as normal.
1-3 ppb	Routine Control MeasuresRegularly flush fixtures to bring a fresh supply of water.Regularly clean aerators to remove lead particles.
4-10 ppb It is recommended fixtures with lead levels over 4 ppb be immediately taken out of service until testing indicates the problem has been addressed.	 Temporary and Permanent Control Measures Temporarily remove a fixture from service until new plumbing and/or a new fixture can be installed. Provide bottled water until lead levels have been addressed and reduced through the mitigation/remediation process. Install a "Do Not Drink" sign. This would only be appropriate for handwash sinks or other fixtures not intended for drinking or cooking. Replace existing fixtures and/or plumbing. Permanently remove the fixture from service. Install a filter. Add corrosion control chemicals to reduce the corrosivity of your water, after consulting with the DWP.
15 ppb or Higher	The DWP recommends schools seek outside consultation to address any sample results over 15 ppb.


Routine Control Measures

Routine control measures involve any reoccurring activity whose primary goal is to *temporarily* lower lead water levels. While it is recommended all schools engage in routine control measures following extended periods where the water has not been used (after vacations, for instance), these methods are *only adequate solutions for lead water levels below 4 ppb*. Routine control measures are also typically not effective when a building's internal plumbing or supply line is contributing to elevated lead levels.

• Flushing

Flushing involves opening taps and letting the water run to remove water that has been standing in the interior pipes and/or the fixtures. Before implementing this procedure for remediation, consider how often flushing should occur throughout the week – and possibly throughout the day – and whether it is feasible for your facility. Depending upon the age and condition of the plumbing and the corrosiveness of the water, elevated lead levels can return relatively quickly following flushing.

Flushing can be a quick and easy solution to lead levels under 4 ppb, especially when contamination is localized in a small area or building. It is recommended as a short-term solution only (while more permanent solutions are being implemented) or to improve overall water quality in a building.

If your school uses a well, excessive flushing may stress your source, increasing the risk of losing pressure or running your well dry. At the same time, if your school is connected to a public water utility, this will increase your water usage and water bill.

When using the 'flushing' method...

DO:

- Develop a system for accountability, including identifying one person who is in charge and record keeping.
- Flush fixtures individually; flushing a toilet will not flush your water fountains.
- Run water for:
 - o 30 seconds to 1 minute for handwash sinks and kitchen faucets.
 - o 1 minute for unrefrigerated drinking water fountains.
 - o 15 minutes for refrigerated drinking water fountains.
- Utilize flushing as a routine practice to improve overall water quality.
- Flush after remediation. In addition to replacing or removing plumbing or fixtures which contain lead, flushing can help clear out debris or lead particulates that may be released when remediation occurs. Remove and rinse the fixture's aerator after flushing to ensure trapped particles are removed.
- Use as a temporary measure while more permanent control measures are being put into place.
- Start with the fixtures closest to the supply line and progress outward from there.

DO NOT:

- Use flushing as a practical remedy for water coolers.
- Flush as a sole effort after finding unacceptable lead levels in your school, without ensuring lead levels will remain low throughout the day.
- Employ flushing as a long-term remediation effort alone. Flushing can be a measure which could be paired with permanent remediation like replacement and/or removal.

• Cleaning Aerators

Lead can dissolve in your water via debris trapped in the water faucet screen called an aerator. These particles dissolve into your water and therefore can increase a water's lead levels. Finding trapped lead debris in an aerator indicates additional remediation should take place to remove the source of lead particles in the plumbing.

It's recommended to routinely clean your aerator to remove trapped debris to improve your overall water quality and reduce lead exposure. It is not an effective remediation method for lead levels over 3 ppb, so should be combined with more aggressive mitigation/remediation measures.

Temporary Control Measures

Temporary control measures involve preventing water consumption *until the plumbing/fixture can be replaced*. Temporary control measures should be used for fixtures where lead is 4ppb or above, and anytime internal plumbing or supply lines are contributing to elevated lead levels.

• Shut Off Fixtures

If initial sample results from a fixture exceed 4 ppb, the outlet can be shut off or disconnected until the problem is resolved. If the outlet is not used regularly, this may be a viable option; however, if the outlet is frequently used for handwashing, this is probably not a practical solution.

• Install Do-Not-Drink Signs

If you cannot immediately replace – and cannot shut off – a fixture whose primary function is not for drinking or cooking, such as a handwash station, you may install a sign that the water should not be used to drink. Signage should be prominent and include words/pictures. It should also be multilingual if there are students for whom English is not the first language.

• Provide Bottled Water

Bottled water is merely a temporary solution and should only be used until fixtures/ plumbing can be replaced. This can be an expensive alternative, but it might be warranted if you are aware of widespread contamination and other remediation is not a near-term option.

Permanent Control Measures

Permanent control measures involve removing lead from water or reducing the amount of lead entering the water. After mitigation/remediation, there are additional follow-up steps. Localized or building-wide flushing should take place after fixtures or internal piping have been replaced, and confirmation samples should be collected to ensure remediation measures were effective. For additional information on follow up sampling, refer to the *Follow-Up Sampling (After Mitigation/Remediation)* section on page 14.

Remove or Replace Fixtures

After identifying the sources of lead contamination, replacing these fixtures and piping components (e.g., valves, leaded solder) will permanently address the problem, compared with other solutions that have long-term costs and risks. If the sources of lead contamination are localized and limited to a few outlets, replacement may also be the most cost-effective option in the short-term. EPA's guidance document, *How to Identify Lead-Free Certification Marks for Drinking Water System and Plumbing Products* can be a useful resource when selecting lead-free plumbing.

If multiple components of a single type (for example, fountain valves) are needed, you may wish to initially purchase only one or two. Take follow-up water samples after installing the new component(s) to verify lead levels have been reduced to acceptable levels. If follow-up testing is satisfactory, you can be reasonably certain the product would perform well at other locations in your facilities.

Pipes within your property and supply lines that are under your and/or a public water system's jurisdiction can be replaced. Contact the public water system regarding who owns the supply line. Your school or district may be responsible for replacing the portion of the supply line that is on school property.

Ongoing renovation of school buildings may provide an opportunity to modify the plumbing system, so water supplied for drinking or cooking can be redirected to bypass sources of lead contamination. Before undertaking such an alternative, be certain you have properly identified all the sources of lead contamination in drinking water.

Because electrical current may accelerate the corrosion of lead in piping materials, consider checking grounding wires. In some cases, existing wires already grounded to the water pipes can be removed by a qualified electrician and replaced with an alternative grounding system. Be aware that the removal of grounding from water pipes may create a shock hazard unless an acceptable, alternative ground is provided.

When making any repairs, be sure only "lead-free" materials are used. The 1986 Safe Drinking Water Act Amendments and the 2011 Reduction of Lead in Drinking Water Act requires only "lead-free" materials be used in new plumbing and plumbing repairs. Make sure all plumbers and other workers involved in construction or maintenance at your school adhere to these requirements. These actions will prevent or minimize new lead from being introduced into the facility's plumbing system. Report any violations of the "lead-free" requirements to the local plumbing inspector, the DWP, or EPA.

• Install a Filter

Point-of-use (POU) filter units are commercially available and can be effective in removing lead. There are a number of POU cartridge filter units on the market with costs running from the relatively inexpensive (\$65 to \$250) to more expensive units (\$250 to \$500), with varying effectiveness. Remember filters need routine maintenance to remain effective.

To find a lead reducing POU filter that will work best for your facility, first verify the product was tested and certified against **NSF/ANSI Standard 53** (for lead removal). This information should be readily available from the manufacturer or from a reputable third-party source (such as NSF International, the Water Quality Association, or the EPA's guide to identifying filters certified to remove lead.)

For additional protection for particulate lead, look for a POU filter which is also certified against NSF/ANSI Standard 42 (for class I particulate reduction, 0.5 μ m to <1 μ m).

• Add Corrosion Control Chemicals

The addition of corrosion control chemicals can prevent or mitigate lead from leaching into water when total plumbing replacement is not an option.

If you are considering installing corrosion control chemicals to treat water entering your building, you should first consult with the DWP. Installation of treatment would lead to your facility being identified as a public water system under the Safe Drinking Water Act (SDWA), and your facility would be required to meet the federal and state regulations for drinking water, including additional water quality monitoring, having a designated operator, and more.

Please consult a water treatment expert before installing any corrosion control chemicals. A list of local treatment companies can be found on the treatment resource page on the DWP website, although other consultants may be available as well.

Follow-Up Sampling (After Mitigation/Remediation)

Work with plumbers and maintenance staff to ensure additional samples are taken from any outlets that were impacted by replacement of fixtures, reconfiguration of plumbing, or other remediation actions.

Additional samples should follow the same testing process as the initial samples. Sample any replaced or reconfigured components using the recommended procedures for first-draw (initial) and/or 30-second flush samples. Follow the sampling instructions included with your sample bottles.

A comparison of original and additional samples will help to assess whether the remediation has been successful in reducing lead in drinking water. Additional samples may be required to further pinpoint sources of lead contamination, if lead levels are still elevated.

Required Reporting

Although all lead mitigation and remediation actions are voluntary, you are required to report those actions. The DWP will reach out to your school via survey to record what actions have been taken or are planned.

It is required that staff, students, and parents be made aware of any discoveries of high lead levels in your school's drinking water. Communication concerning remediation and mitigation efforts should be maintained throughout the process.

Funding for Mitigation and Remediation

Funding and contact information for mitigation and remediation can be found in the EPA's guide for *Potential Funding Sources for Reducing Lead in Drinking Water in Schools and Child Care Facilities*.

The EPA's document provides information on national foundations, corporations, and state and federal agencies that have a strong commitment to supporting school and child-care improvement initiatives. The national organizations listed here provide funding for environmental health, children's health, and environmental education projects. In addition, these organizations are committed to serving their local communities.

The Maine CDC Drinking Water Program will update schools when new funding sources become available. For more information, visit the DWP Website.

Copyright © 2021 Maine CDC Drinking Water Program

All rights reserved.

The Department of Health and Human Services complies with applicable Federal and State civil rights laws and does not discriminate on the basis of disability, race, color, sex, gender, sexual orientation, age, national origin, religious or political belief, ancestry, familial or marital status, genetic information, association, previous assertion of a claim or right, or whistleblower activity, in admission or access to, or the operation of its policies, programs, services, or activities, or in hiring or employment practices.